B vitamins are a group of eight essential vitamins with several critical functions in the body. Among the B-complex’s many critical roles are energy (protein, carbohydrates, and fat) metabolism, supporting and maintaining the healthy function of the adrenal glands, skeletal muscle function, and digestion.
While rates of metabolism and clearance differ between each B vitamin, all B vitamins are water-soluble and are thus not stored in fat. As a result, the body simply excretes excess B vitamins in the urine and requires replenishment (from food or supplements) in order to maintain the cell functions to which B vitamins contribute. Along with choline and inositol added, collectively this group of nutrients are essential for maintaining normal energy levels, cognition, mood, bodily function, and well-being.
B Vitamins (Thiamine, Riboflavin, Niacin, B6 [Pyridoxine], Folic Acid, B12, Biotin, and Pantothenic acid)
B vitamins are a group of eight essential vitamins with several critical functions in the body. Though both molecularly and physiologically distinct, they are also deeply interrelated in their effects, synthesis and metabolism. Among the B-complex’s many critical roles are energy (protein, carbohydrates, and fat) metabolism, supporting and maintaining the healthy function of the adrenal glands, skeletal muscle function, and digestion.
While rates of metabolism and clearance differ between each B vitamin, all B vitamins are water-soluble and are thus not stored in fat. As a result, the body simply excretes excess B vitamins in the urine and requires replenishment (from food or supplements) in order to maintain the cell functions to which B vitamins contribute. Collectively this group of vitamins are essential for maintaining normal cognition, mood, bodily function, and well-being.
Choline
Choline is an essential nutrient involved in numerous metabolic pathways, including DNA regulation and repair, protein function, and metabolism. Perhaps most importantly, the critical neurotransmitter acetylcholine is produced directly from free choline via cholinergic neurons. Acetylcholine is then responsible for a number of functions itself, most crucially as the compound which induces muscular contraction, and as the neuromodulator partially responsible for modulating risk/reward, arousal, and enhancing memory.
Choline’s essential role as a substrate for acetylcholine, and therefore brain development, is well documented in animal models. These studies demonstrate that levels of free maternal choline have a direct and fundamental impact on prenatal brain development, with the enhancements or deficits lasting into adulthood. Choline’s enhancing effect is particularly prominent in the hippocampus. In humans, the hippocampus is primarily involved in the consolidation of memory (taking short, episodic memory and translating it into long-term memory) and the learning of new information. Acetylcholine is a critical component in these processes, as mentioned above, and choline may therefore play a potential role in these processes as well by providing the substrate for acetylcholine synthesis
Inositol
The nutrient inositol, also known as myo-inositol, was once called “vitamin B8”, however, it was later found to be produced by humans, and thus is not technically a vitamin. Inositol heightens the activity of serotonin in the brain, and thus has a vital role in mood and emotional balance. Inositol is also a type of sugar that influences the insulin response and several hormones associated with mood and cognition. It has antioxidant properties that fight the damaging effects of free radicals in the brain, circulatory system, and other body tissues.